
Assignment 8 - Dungeon Generator

Thom Mott
CMPM146, University of California, Santa Cruz

ABSTRACT
This paper describes a procedural dungeon generation system that creates playable
dungeon layouts using randomness and simple constraints using a backtracking ap-
proach. Dungeons are built by selecting doors and placing compatible room types
while preventing overlap and enforcing size limits. The generator ensures there is al-
ways a valid path from the starting room to a target room, with additional dead-end
rooms used for special spaces such as treasure rooms. The system produces consis-
tent results through seeded randomness and generates varied dungeon layouts that are
visually coherent and suitable for gameplay.

Repository Link: https://github.com/Spebby/Dungeon-Generator
Hash: 4c5af57

1 INTRODUCTION

Procedural content generation in games presents a compelling challenge, creating coherent playable spaces that are not only fun
is a tough challenge. For this project, I developed a backtracking-based algorithm, as required by assignment spec, which can
generate varied, interconnected room layouts, while maintaining performance suitable for real-time game integration. The system
was originally designed for CMPM146 and later adapted for use in CMPM121, demonstrating its extensibility.

2 GENERATION ALGORITHM

2.1 Overview and Architectural Decisions

Figure 1: Examples of archetypes, each room is an
example of a room in a given archetype.

The generation system operates on a recursive backtracking approach. Dun-
geons are built incrementally by selecting doors from a frontier, and at-
tempting to place compatible attaching rooms, picked from an “archetype”.
“Archetypes” are a categorisation for rooms based on their door configura-
tion and size defined by designers at built time. Within archetypes, rooms are
given individual weights and archetypes themselves are given weights for se-
lection purposes. This abstraction is essential for scalability, as room variants
increased dramatically for the CMPM121 version. The generation process re-
mained tractable by selecting archetypes first, then choosing specific variants
within those archetypes once the dungeon graph has been completed.

The core data structures were designed to minimise allocation overhead,
while maintaining flexibility required for backtracking. Custom wrapper types,
such as RentBuffer were defined to keep allocations low. RentBuffer
itself is a thin wrapper around ArrayPool, and was necessary for managing
allocation pressure, which plagues recursive algorithms. Explanations of these types can be found in the performance optimisation
section.

1. Occupancy tracking is implemented as a RentBuffer<Vector2Int>, containing all occupied grid cells, copied and ex-
tended on each recursive call.

2. A RentBuffer<Door> contained unprocessed doors and comprised the Frontier. It was rebuilt at each recursion level.

https://github.com/Spebby/Dungeon-Generator/tree/main
https://github.com/Spebby/CMPM146-Part6/commit/4c5af57e1cd9e128bfbc244e5799c4bb9cb4a505


2 Mott

3. The room graph was constructed using a Dictionary<Vector2Int, RoomNode>, mapping grid coordinates to room
nodes for pathfinding and special room placement. RoomNodes maintain a HashSet of connected neighbours, ensuring a
bidirectional placement.

2.2 Room Selection and Placement

The generation process begins with a randomly selected starting room, placed at the origin, its doors comprise the initial frontier,
and generation proceeds through recursive calls of a GenerateWithBacktracking method, defined as so. Room selection utilises a
weighted random sampling approach, implemented through a custom “Weighted Bag” structure, which I discuss in detail in the
performance optimisation section.

1 bool GenerateWithBacktracking(in RentBuffer<Vector2Int> occupancy,
2 in RentBuffer<Door> doors, int depth)

Each iteration follows this sequence:

1. If the frontier is empty, validate that the dungeon meets the minimum size and dimensional constraints. If constraints are satisfied,
then generation is successful. Otherwise, backtrack.

2. A door is randomly selected from the frontier based on the current RNG state.
3. A valid room archetype is selected given the door’s direction using an O(1) lookup from a precomputed table.
4. Candidate archetypes are sampled using the Weighted Bag structure.

1 Span<int> weights = stackalloc int[candidates.Length];
2 for (int i = 0; i < candidates.Length; i++) { weights[i] = candidates[i].Weight; }
3 using WeightedBag<RoomArchetype> bag = new(candidates, weights);
4 while (bag.TryNext(_rng, out RoomArchetype hopeful)) {
5 // Attempt placement...
6 }

2.3 Constraint Validation

For each candidate archetype, several constraints are checked in order of computational cost. Overlap detection is the most expensive
check, and is done first.

1 ReadOnlySpan<Vector2Int> occMap = hopeful.GetOccupancy(offset);
2 ReadOnlySpan<Vector2Int> baseOccupancy = occupancy.Buffer.AsSpan(0, occupancyCount);
3 if (!CanFit(occMap, baseOccupancy)) continue;

The CanFit() method performs a nested loop over the new room’s occupancy cells and all existing occupied cells—an O(n
× m) operation that dominates the runtime profile. Each Vector2Int comparison checks whether any cell in the prospective room
overlaps with already-placed rooms. Then, a door budget check is performed, preventing runaway generation where the frontier
grows faster than rooms are consumed, ensuring dungeons stay within the configured maximum size. Once a candidate passes all
constraint checks, a new frontier is constructed for the next recursive call, and the new room’s occupancy is merged with the existing
occupancy map and room connectivity is recorded in the graph, and the next layer of recursion commences. During the unwind
phase of recursion, the connections between rooms are recorded in the graph.

A limitation, and potential improvement, is path reconvergence. Once a path splinters, it will never connect to any other path,
meaning every divergent path will lead to a dead end, and no loops exist. I had attempted to implement this by checking if a new
door’s match already existed in the frontier, but the overlap check rejects any placement where rooms touch, even if valid door-to-
door connections exist. To properly implement this, the frontier would have to be pre-filtered to identify legitimate reconnection
opportunities before performing the overlap check. This remains a priority for future refinement.



Dungeon Generator 3

Figure 2. An example of generated output

Occasionally, generation can fail. This can either be due to exhausting all possibilities, or, more likely, hitting the designer-set
iteration limit. In the case of failure, if permitted, the algorithm is run again with a different seed (selected using the previous
generation’s RNG). Additionally, a failCount can be defined to prevent this process from happening too many times.

3 PERFORMANCE & OPTIMISATIONS

3.1 The Allocation Problem

My initial implementation suffered from severe performance issues, dungeons with 25-35 rooms required approximately 30 sec-
onds to generate, sometimes far more. This was unacceptable for any practical application. Profiling revealed that weighted room
selection and allocator churn were the primary bottlenecks. The original approach allocated and deallocated many arrays on each
iteration.

1 while (validRooms.Count != 0) {
2 Room hopeful = RoomArchetype.GetRandomRoom(validRooms);
3 validRooms.RemoveSwapBack(hopeful);
4 List<Vector2Int> occMap = hopeful.GetOcc(match.GetGridCoords());
5 if (!CanFit(occMap, occupied)) continue;
6 // ...
7 }

Each call to GetRandomRoom was taking a disproportionate amount of compute time due to needing to reallocate the entire
room array and then perform a swapback removal for each weighted selection. Originally, the process looked like this. A typical
30-room dungeon may recurse 40-50 levels deep, with each level performing 5-10 weighted selections. This resulted in hundreds
of allocations per generation, each adding to garbage collection pressure. I was able to vastly improve allocations using a dedicated
structure, the “Weighted Bag”.

3.2 Weighted Bag Implementation

I developed a WeightedBag<T> structure that performs weighted selection without incurring the cost of repeated allocations.
The original Weighted Selection routine is a form of roulette wheel selection. The key insight, and what Weighted Bag is built
around, is that roulette wheel selection doesn’t require modifying the underlying item array, only tracking which indices have been
selected. The structure makes use of C#’s ArrayPool to rent index arrays, and removes selected items via swap-back to avoid
reallocated underlying arrays. The struct is defined loosely like this.

1 internal ref struct WeightedBag<T> {
2 readonly T[] _items;



4 Mott

3 readonly ReadOnlySpan<int> _weights;
4 readonly int[] _indices;
5 int _count;
6 int _weightSum;
7

8 public WeightedBag(in T[] items, in ReadOnlySpan<int> weights) {
9 _items = items;

10 _weights = weights;
11 _indices = ArrayPool.Rent(_items.Length);
12 _indecies = [1..n];
13 _count = n;
14 _weightSum = 0;
15 _weightSum = weight.sum();
16 }
17

18 public bool TryNext(Random rng, out T result) {
19 if (_count == 0) return false;
20

21 float r = rng.NextDouble() * _weightSum;
22 float cumulative = 0f;
23

24 for (int i = 0; i < _count; ++i) {
25 int index = _indices[i];
26 cumulative += _weights[index];
27 if (!(cumulative >= r)) continue;
28 result = _items[index];
29 _weightSum -= _weights[index];
30

31 // Swap back and shrink
32 _count--;
33 _indices[i] = _indices[_count];
34 return true;
35 }
36

37 result = default;
38 return false;
39 }
40 }

As discussed above, the bag rents from the ArrayPool to avoid allocating directly (if at all) iteration to iteration. The ref
struct declaration ensures the bag is stack-allocated and cannot bleed into the heap. The structure maintains a running total of
remaining weighted, removing the need to recalculate the sum on each iteration. With the weighted bag implemented, the prior
selection’s code can then be rewritten like so.

1 Room[] candidates = GetValidRooms(matching.GetDirection());
2 Span<int> weights = stackalloc int[candidates.Length];
3 weights = candidates.Weights;
4 using WeightedBag<Room> bag = new(candidates, weights);
5

6 while (bag.TryNext(_rng, out Room hopeful)) {
7 RSpan<Vector2Int> occMap = hopeful.GetOcc(match.GetGridCoords());
8 if (!CanFit(occMap, occupancy.Buffer.AsSpan())) continue;
9 ...



Dungeon Generator 5

10 }

3.3 Additional Optimisations

Beyond weighted selection, I implemented several other performance improvements, which when combined with weighted bag
vastly improved generation time from 30 seconds to 4 seconds, a 7.5x improvement.

Of these, RentBuffer and Lazy Pooling were major gains. RentBuffer<T> essentially acted as a wrapper for C#’s
ArrayPool system, which ensured proper cleanup even during exception unwinding, and made the code’s allocation intentions
explicit. I leverage the JIT by using readonly struct, which will optimise this to direct array access, without wrapper over-
head.

1 internal readonly struct RentBuffer<T> : IDisposable {
2 public readonly T[] Buffer;
3 public readonly int Count;
4 public RentBuffer(T[] buf, int cnt) {
5 Buffer = buf;
6 Count = cnt;
7 }
8

9 public void Dispose() => ArrayPool<T>.Shared.Return(Buffer);
10 }

The Lazy Pooling strategy ensures that occupancy data that must persist across recursive calls is rented from the ArrayPool
only when necessary. Failed placement attempts never allocate merged occupancy buffers, the allocation only occurs after all
constraint checks pass and recursion is imminent.

1 // Only allocate when we know we're recursing
2 Vector2Int[] occBuf = ArrayPool<Vector2Int>.Shared.Rent(occLen);
3 Span<Vector2Int> occSpan = occBuf.AsSpan(0, occLen);
4 baseOccupancy.CopyTo(occSpan);
5 occMap.CopyTo(occSpan.Slice(occupancyCount));
6 using RentBuffer<Vector2Int> occRentBuffer = new(occBuf, occLen);

3.4 Remaining Bottlenecks

Still, there are some major issues. While 4 seconds is pretty good, considering it’s only an average case, and some seeds can take
far longer due to generation failing, shaving off any additional time is of high priority. While WeightedSelection was certainly the
biggest bottleneck, CanFit() is right up there as another major bottleneck. To illustrate the problem, you can see that CanFit()
is defined as so. . .

1 static bool CanFit(in ReadOnlySpan<Vector2Int> occMap,
2 in ReadOnlySpan<Vector2Int> occupied) {
3 foreach (Vector2Int occ in occMap) {
4 foreach (Vector2Int t in occupied) {
5 if (t == occ) return false;
6 }
7 }
8 return true;
9 }



6 Mott

This is an O(n x m) next loop. Once or twice this is no big deal, but at the scale it is being called, guaranteed at least once
per room attempt, sometime 10’s of times per recursive layer, this cost gets expensive extremely quick. For a 30-room dungeon,
with 6 cells per room, that’s 180 comparisons, and if weighted bag tries 5-10 candidates before finding one that fits, that’s 900 to
1800 comparisons per successful placement. One fix would be to replace the occupancy list with a HashSet<Vector2Int>, or
spatial hash grid, which would reduce overlap check to just O(n), which could yield a major speedup. Additionally, the fit check
could account for the fact that many archetypes share the same dimensions, and we’d skip checks we already know the outcome of.

4 ROOM DESIGN & CONSTRAINTS

4.1 Archetype System

For CMPM121, I redesigned the room catalogue around a cleaner archetype system, rather than enumerating every possible room
variant, rooms are categorized by their door configurations. Within each archetype, multiple variants provide visual and gameplay
diversity, without complicating generation logic. For CMPM121’s larger-scale rooms, designed to accommodate specific enemy
types and combat scenarios without ballooning the cost of generation, this was essential.

I wanted to support non-uniform room dimensions, though I did not have the time to properly test and implement this function-
ality. Still, I designed the architecture such that it could be added without too much additional work. I chose to implement through an
occupancy grid. Each room defines its occupancy as an nxm rectangle, then “chisles” out the actual shape. The GetOccupancy()
method returns a span representing only the occupied cells. This approach would allow non-rectangular rooms, such as L-shaped,
triangular and interior voids without complicating placement logic.

4.2 Special Room Placement

The generator includes support for special room types. I implemented three, the starting room, target room and the treasure room.
The placement rules are hardcoded, but represent candidates for a more modular “graph modifier” system, where each special room
type would have associated placement rules, priority values and constraint checks that execute during a finalisation phase.

The starting room is simple enough, the room at the origin, and the first room placed, will always be a starting room. Target
rooms are also a guaranteed room type, and are placed at the deadend farthest from the spawn point.

1 List<RoomNode> endrooms = RoomNode.GetEndRooms(_roomGraph[STARTING_POS]);
2 ReplaceRoom(endrooms[Mathf.RoundToInt(TargetRoomDistance
3 * (endrooms.Count - 1))], target);

The TargetRoomDistance parameter (0-1) controls placement along the sorted list of endrooms, calculated through BFS.
At 1.0, it selects the farthest, 0.5 the mid-way, and so on. This gives designers control over pacing without hardcoding specific
placement logic. For the sake of simplicity, only single cell rooms are considered. Multi-cell rooms are ignored.

The treasure room follows similar logic, but with additional constraints. It can only spawn if there’s at least one endroom
available after the target room is placed, and through a CanSpawnTreasureRoom() call, can be further restricted based on
game state.

5 CHALLENGES & FUTURE WORK

5.1 Technical Challenges

The primary challenge throughout development was achieving acceptable performance within the constraints of recursive back-
tracking, an inherently inefficient algorithm. I touched on this in the weighted selection part, but array allocations were a major
concern for me. I ended up having to refactor the room class to pre-calculate the door positions and store it in a cache. For
doors and occupancy, I make use of an additional internal buffer which holds the offsets that are calculated by GetDoors()

and GetOccupancy(). A ReadOnlySpan is returned to give the map generator access to the positions for the purpose of
computation. If we need this data to persist, as in the case of recursion, then and only then will we rent from the ArrayPool.

Early optimisation attempts focused on algorithmic improvements (better heuristics, smarter frontier ordering) when the real
issue was allocation overhead. Weighted selection wasn’t inherently slow, allocating arrays on every call made it slow. The Weighted



Dungeon Generator 7

Figure 3. A large map generated with many special rooms.

Bag optimisation didn’t change algorithmic complexity, but delivered a massive speedup by eliminating allocations. Modern C#
performance features greatly helped in this endeavour, giving me fine control over allocations through Span<T>, stackalloc,
ref struct and ArrayPool<T>. These features let me write code that’s both safe and nearly as fast as unmanaged C++ code,
though I’d think the design of a language like Zig, exposing explicit allocations, would have helped this process far more.

5.2 Improvements

The most significant flaw is the slowness of CanFit(), but there are some other major things that irk me.

1. Path Reconvergence would go a long way in making dungeons feel more interesting to explore, and likely would reduce failure
rates during generation.

2. The Special Room system is rigid, and doesn’t allow for more sophisticated room replacement without modifying the generation
code more heavily. Ideally, special rooms could have more impact on dungeon generation (eg. hidden rooms, with obscured
entrances)

3. While I laid the foundation for it, lacking Non-Rectangular rooms is a major limitation, and some systems would need updating.
Doors are currently positioned assuming rooms occupy a full nxm rectangle, concave boundaries need explicit door coordinates,
rather than automatic boundary detection. Room.Place() also assumes a bottom-left origin, which may not be appropriate
for all archetypes.

4. Room weights are static, but generation feel could be greatly improved if generation context could modify weights. Archetypes
with many doors could be discouraged as the room count is close to being hit.


